Законы независимого наследования признаков

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Законы независимого наследования признаков». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Закон независимого наследования признаков. Отношение 9:3:3:1, полученное при расщеплении второго гибридного по­коления в дигибридном скрещивании, позволило Менделю сфор­мулировать второй закон, или закон независимого наследования признаков: пары контрастирую» щих признаков наследуются при скрещивания независимо друг от друга, при этом каждая па­ра дает расщепление в отношении 3:1.

В самом деле, если рассмот­реть полученные результаты скрещивания, обращая внима­ние только на окраску семян, то окажется: растений с жел­тыми семенами F2 будет 12 (9 + 3), а с зелеными — 4 (3+ 1). Следовательно, отношение желтозерных растений к зеле-нозерным можно выразить как 12:4, или 3:1. А если подсчи­тывать расщепление в F2 толь­ко по признаку характера по­верхности семян, то получим 12 гладкосемянных растений на 4 морщинистосемянных, следовательно, тоже 3:1. При этом отношение 9:3:3:1 лег­ко получить, перемножив два предыдущих простых отноше­ния между собой: (3 жел.: 1 зел.) • (3 гл.: 1 морщ.) = 9 желт. гл.: 3 жел. морщ.: 3 зел. гл.: 1 зел. морщ. Это и будет означать, что каждая пара признаков насле­дуется как бы сама по себе, независимо от другой пары, а со­четание признака окраски с признаком поверхности семян соз­дается свободной комбинацией любого признака с любым.

Дигибридное скрещивание. Закон независимого наследования признаков

Второй закон Менделя — при моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Гетерозиготные особи — такие организмы, у которых копии генов в хромосомах представлены разными аллелями. В результате неполного или полного доминирования может проявляться как смесь этих признаков (АВ), так и один из них (Аb). Противоположностью гетерозиотности является гомозиготность, когда аллели гена в хромосомах идентичны.

Аллель — различные формы одного и того же гена, расположенные в одинаковых участках хромосом.

В соответствии со вторым законом Менделя, при скрещивании гетерозиготных особей происходит расщепление, когда часть потомства несет доминантный признак, а часть — рецессивный. Проявление более слабых характеристик свидетельствует о том, что они не подавляются полностью.

Так, расщепление при скрещивании двух особей типа Аb (где А — доминантный зеленый цвет, b — рецессивный желтый) покажет следующие результаты: АА, Аb, Аb и bb, которые в соответствии со вторым законом Менделя будут различаться:

  • По фенотипу — на 1 потомка с проявлением зеленого цвета (bb) будет приходится 3 желтых (АА, Аb, Аb).
  • По генотипу — на 1 особь типа АА, будет приходится 2 Аb и 1 bb.

Необходимо знать, что для выполнения второго закона Менделя необходимо соблюдение нескольких условий. К наиболее важным относятся:

  • Изучение большого числа потомков или скрещиваний.
  • Отсутствие избирательности при оплодотворении — гаметы с разными аллелями сливаются с одинаковой вероятностью.
  • Родители должны изначально относиться к чистым линиям, то есть гомозиготны по выбранному гену (AA и aa).
  • У разных генотипов должна быть одинаковая выживаемость.

Закон чистоты гамет подразумевает, что в эту клетку попадает только один аллель из пары, имеющейся у гена родителя.

Гаметы — репродуктивные клетки, имеющие одинарный набор хромосом и участвующие в половом размножении.

По гипотезе Менделя, понадобившейся ему для обоснования Закона расщепления, при слиянии мужской и женской гамет наследственные признаки не смешиваются, а передаются в изначальном виде (то есть остаются чистыми). Позднее было подтверждено, что от отцовского и материнского организмов зигота получает по половине хромосом.

Из всех закономерностей, установленных Менделем для наследственности, этот закон имеет наиболее общий характер, то есть, выполняется для самого широкого круга обстоятельств.

Раздел ЕГЭ: 3.5. Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно-и дигибридное скрещивание)…



Мендель, проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридно-логический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия первого поколения.

Законы Менделя

Закон независимого наследования — каждая пара признаков наследуется независимо от других пар, так что происходит расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Пример: при скрещивании растений гороха с желтыми и гладкими семенами (доминантные признаки) с растениями с зелеными и морщинистыми семенами (рецессивные признаки) во втором поколении происходит расщепление в соотношении 3:1 (три части желтых и одна часть зеленых семян) и 3:1 (три части гладких и одна часть морщинистых семян). Расщепление по одному признаку идет независимо от расщепления по другому.

Признак — любая особенность организма, любое его качество или свойство, по которому можно отличить одну особь от другой.

Альтернативные признаки — взаимоисключающие варианты одного и того же признака (пример: желтая и зеленая окраска семян гороха).

Доминирование — преобладание у гибрида признака одного из его родителей.

Доминантный признак — преобладающий признак, появляющийся в первом поколении потомства у гетерозиготных особей и доминантных гомозигот (см. ниже).

Рецессивный признак — признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков; проявляется в гомозиготном состоянии рецессивного гена.

Фенотип — совокупность всех внешних и внутренних признаков организма. Фенотип формируется при взаимодействии генотипа со средой обитания организма.

Аллель — одна из альтернативных форм существования гена, определяющего некоторый признак. Количество аллелей одного и того же гена может достигать нескольких десятков.
■ Каждая хромосома или хроматида может нести только один аллель данного гена.
■ В клетках одной особи присутствует только два аллеля каждого гена.

Локус — участок хромосомы, на котором расположен ген.

Аллельные гены — гены, расположенные в одних и тех же локусах гомологичных хромосом и отвечающие за альтернативные проявления одного и того же признака (пример: гены, отвечающие за цвет глаз человека). Аллельные гены обозначают одинаковыми буквами латинского алфавита: А, а; В, b.

Неаллельные гены — гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом.

Доминантные гены — гены, соответствующие доминантным признакам; обозначаются прописными латинскими буквами (А, В).

Рецессивные гены — гены, соответствующие рецессивным признакам; обозначаются строчными латинскими буквами (а, b).

Генотип — совокупность всех генов данного организма.

Скрещивание — получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке.

Генетическая запись скрещивания:

первая строка: буква Р (родители), генотип женского организма, знак скрещивания х, генотип мужского организма; под обозначениями генотипов могут быть указаны признаки организмов;

вторая строка: буква G (гаметы) и (под обозначениями генотипов, в кружочках) гаметы женской и мужской особей;

третья строка: буква Fk (потомки), генотипы потомков (под обозначениями генотипов могут быть указаны признаки организмов); к — номер поколения.

Гомозигота — зигота, содержащая одинаковые аллели одного гена — доминантные (АА, доминантная гомозигота) или рецессивные (аа, рецессивная гомозигота).

■ Гомозиготная особь образует один тип гамет и не дает расщепления при скрещивании.

Гетерозигота — зигота, содержащая два разных аллеля одного гена (Аа).

■ Гетерозиготная особь в потомстве дает расщепление по данному признаку. Образует несколько типов гамет.

Правило (гипотеза) чистоты гамет. Так как каждая хромосома или хроматида может нести только один аллель данного гена, то при расхождении хромосом (при первом делении мейоза) или хроматид (при втором делении мейоза) вместе с ними в гаплоидные клетки гамет отходит лишь по одному из аллелей каждой аллельной пары.

Поэтому: любая гамета организма несет только по одному аллелю каждого гена, т.е. аллели в гаметах не перемешиваются.

Следствия правила чистоты гамет:

Первый закон Менделя (закон единообразия гибридов первого поколения, или правило доминирования) описывает скрещивание гомозиготных особей: при скрещивании гомозиготных особей (взятых из чистых линий одного вида), отличающихся по одному из пары альтернативных признаков, получаемые гибриды первого поколения единообразны как по фенотипу, так и по генотипу.

Закон независимого наследования признаков это какой 2021 год

Третий закон Менделя (закон независимого наследования признаков) описывает дигибридное скрещивание особей: при скрещивании гомозиготных организмов, отличающихся по двум или нескольким парам признаков, во втором поколении наблюдается независимое наследование генов разных аллельных пар и соответствующих им признаков.

Т.е. каждая пара аллельных генов (и соответствующих им альтернативных признаков) наследуется независимо друг от друга (другая формулировка 3-го закона Менделя).

Законы Менделя выполняются лишь в среднем, при большом числе однотипных опытов. Они являются следствием случайного сочетания гамет, несущих разные гены, и статистического характера наследования, определяемого большим числом равновероятных встреч гамет.

❖ Дополнительные условия, при которых выполняются законы Менделя:
■ один ген должен контролировать только один признак, и один признак должен быть результатом действия только одного гена;
■ доминирование должно быть полным;
■ сцепление между генами должно отсутствовать;
■ равновероятное образование гамет и зигот разного типа;
■ равная вероятность выживания потомков с разными генотипами;
■ статистически большое количество скрещиваний.

❖ Значение законов Менделя:
■ эти законы носят универсальный характер и не зависят от систематического положения организма и сложности его строения;
■ с их помощью можно рассчитать число типов образующихся гамет и установить возможные варианты сочетания доминантных и рецессивных признаков у гибридов.

Этот закон был установлен в ходе первого этапа эксперимента. Были взяты два гороха с разными особенностями – разным цветом семян. Они были обозначены как родительские растения или «РР». Одни были желтые, другие зеленые. Для чистоты эксперимента проводилось искусственное опыление.

Результатом стало появление гороха первого поколения «F1». У таких растений семена всегда были желтыми. Это значит, что второе поколение представляло собой один определенный тип и имело признаки только одного из растений первого поколения (желтый цвет в данном случае). Такие признаки называются доминантными.

Таким образом у всего второго поколения проявилось единообразие, что и дало название закону.

В ходе экспериментов Мендель смог установить, что любой ген может содержать рецессивную и(или) доминантную части. Она подавляет рецессивную. Обе эти части впоследствии были названы аллелями. При соединении растений с разными генами, их аллели будут передаваться независимо друг от друга, что начнет проявляться во втором поколении. Если в первом поколении растение приобретает только доминантные признаки, то во втором начнут проявляться и рецессивные. На этом и основываются три закона Менделя и это позволяет ученым-генетикам предугадывать поведение организма при размножении.

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека, где А и В — доминантные гены, а 0 — рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 — вторую, ВВ и В0 — третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвёртая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)».

Закон чистоты гамет — в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный закон носит наиболее общий характер (выполняется при наиболее широком круге условий).

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. У гибрида присутствуют оба фактора — доминантный и рецессивный, но проявление признака определяет доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки — гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Гипотезу (теперь её называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

Известно, что в каждой клетке организма в большинстве случаев имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы обычно содержат каждая по одному аллелю данного гена. Генетически «чистые» гаметы образуются следующим образом:

Закон независимого наследования (третий закон Менделя) — при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам, и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9/16 были с пурпурными цветами и зелёными горошинами, 3/16 с белыми цветами и зелёными горошинами, 3/16 с пурпурными цветами и желтыми горошинами, 1/16 с белыми цветами и желтыми горошинами.

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом (нуклеопротеидных структур в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи) гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Законы независимого наследования

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.
  5. Родительские организмы принадлежат к чистым линиям, то есть действительно гомозиготны по изучаемому гену (АА и аа).
  6. Признак действительно моногенный
  7. Признак не сцеплен с половыми хромосомами
  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).
  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Не возвращаясь к расхождениям в интерпретации экспериментов Менделя между их автором и современными генетиками, можно вкратце напомнить, что путем скрещивания
гладкого горошка и морщинистого горошка Мендель получил гладкий гибридный горошек (который в точности соответствовал принципу однородности гибридов первого поколения), а также путем скрещивания между семенами этого горошка он получил 3/4 гладкого гороха и 1/4 морщинистого горошка (рисунок 1).

Между 1856-1863 годами Мендель проводил эксперименты по гибридизации огородного гороха. В течение этого периода он выбрал некоторые отличительные черты гороха и провел перекрестное / искусственное опыление на линиях гороха, которые показали стабильную наследственность и подверглись непрерывному самоопылению. Такие линии гороха называются чистопородными линиями гороха.

Закон независимого наследования признаков

В этом эксперименте Мендель взял два растения гороха противоположных признаков (одно короткое и одно высокое) и скрестил их. Он обнаружил, что потомство первого поколения было высоким, и назвал его потомством F1. Затем он скрестил потомство F1 и получил как высокие, так и короткие растения в соотношении 3: 1.

Мендель даже провел этот эксперимент с другими контрастирующими признаками, такими как зеленый горошек против желтого горошка, круглый или морщинистый и т. д. Во всех случаях он обнаружил, что результаты были одинаковыми. Исходя из этого, он сформулировал законы сегрегации и доминирования.

В эксперименте с дигибридным скрещиванием Мендель рассмотрел два признака, каждый из которых имеет два аллеля. Он скрестил морщинистые зеленые семена и округло-желтые семена и заметил, что все потомство первого поколения (потомство F1) было округло-желтым. Это означало, что доминирующими чертами были круглая форма и желтый цвет.

Затем он самоопылял потомство F1 и получил 4 разных признака: морщинисто-желтые, округло-желтые, морщинисто-зеленые семена и округло-зеленые семена в соотношении 9: 3: 3: 1.

  • Генетический состав растения известен как генотип. Напротив, внешний вид растения известен как фенотип.
  • Гены передаются от родителей к потомству парами, известными как аллели.
  • Во время гаметогенеза, когда хромосомы делятся вдвое, существует 50% -ная вероятность слияния одного из двух аллелей с другим родителем.
  • Когда аллели одинаковы, они известны как гомозиготные аллели, а когда аллели различны, они известны как гетерозиготные аллели.

Закон расщепления гласит, что во время производства гамет две копии каждого наследственного фактора разделяются, так что потомство получает по одному фактору от каждого родителя. Другими словами, пары аллелей (альтернативная форма гена) разделяются во время формирования гамет и повторно объединяются случайным образом во время оплодотворения. Этот закон также известен как третий закон Менделя о наследовании.

Закон расщепления — при скрещивании двух гетерозиготных потомков первого поколения между собой, во втором поколении наблюдается расщепление в определённом числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Скрещивание организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Закономерности наследования признаков

Третий закон Менделя, или закон независимого наследования признаков, действует только для генов, локализованных в разных хромосомах или расположенных в одной хромосоме, но достаточно далеко друг от друга.

В основном если гены находятся в одной хромосоме, то они наследуются совместно, то есть проявляют сцепление между собой, и закон независимого наследования признаков уже не действует.

Например, если бы гены, отвечающие за окраску и форму семян гороха находились в одной хромосоме, то гибриды первого поколения могли бы образовывать гаметы только двух типов (AB и ab), так как в процессе мейоза независимо друг от друга расходятся родительские хромосомы, но не отдельные гены. В таком случае во втором поколении было бы расщепление 3:1 (три желтых гладких на одно зеленое морщинистое).

Однако не так все просто. Из-за существования в природе конъюгации (сближения) хромосом и кроссинговера (обмена участками хромосом) рекомбинируются и гены находящиеся в гомологичных хромосомах. Так, если хромосома с генами AB в процессе кроссинговера обменяется участком с геном B с гомологичной хромосомой, чей участок содержит ген b, то могут получиться новые гаметы (Ab и, например, aB). Процент таких рекомбинантных гамет будет меньше, чем если бы гены находились в разных хромосомах. При этом вероятность кроссинговера зависит от удаленности генов на хромосоме: чем дальше, тем вероятность больше.

Продолжая скрещивать между собой особи, взятые из гибридов первого поколения, Мендель получил в F2 расщепление признаков. Другими словами, фенотипически были выявлены растения с рецессивным алеллем исследуемого признака (зеленой окраской семян) в количестве одной трети от всех гибридов. Таким образом, установленные законы независимого наследования признаков позволили Менделю проследить механизм передачи как доминантных, так и рецессивных генов в нескольких поколениях гибридов.

Благодаря современным генетическим исследованиям, было установлено, что законы независимого наследования признаков подлежат дальнейшему расширению, так как отношение «1 ген – 1 признак», лежащее в их основе, не является универсальным. В науке стали известны случаи множественного действия генов, а также взаимодействия неалелльных их форм. К таким видам относится эпистаз, комплиментарность, полимерия. Так было установлено, что количество пигмента кожи мелатонина, отвечающее за её цвет, контролируется целой группой наследственных задатков. Чем больше в генотипе человека доминантных генов, отвечающих за синтез пигмента, тем темнее кожа. Этот пример иллюстрирует такое взаимодействие, как полимерия. У растений данная форма наследования присуща видам семейства злаковых, у которых окраска зерновки контролируется группой полимерных генов.

Этот закон был установлен в ходе первого этапа эксперимента. Были взяты два гороха с разными особенностями – разным цветом семян. Они были обозначены как родительские растения или «РР». Одни были желтые, другие зеленые. Для чистоты эксперимента проводилось искусственное опыление.

Для третьего опыта Мендель использовал растения гороха с несколькими различающимися признаками: цвет семян и их гладкость. Один вид имел семена гладкие желтые, а второй – зеленые и ребристые.

В первом поколении растение приобрело следующие признаки: желтый цвет и гладкость семян.

Во втором поколении уже наблюдалось расщепление:

желтый цвет и гладкие семена;

желтый цвет и ребристые семена;

зеленый цвет и гладкие семена;

зеленый цвет и ребристые семена.

Получившийся результат говорит о том, что передача и наследование двух разных признаков не зависит друг от друга. А соответственно за гладкость отвечает другой ген, у которого своей набор аллелей. Гладкие семена обуславливаются сочетанием аллелей «BB», «Bb», «bB».

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого — белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

Грегор Мендель (1822-1884) — австрийский биолог и ботаник, создатель учения о наследственности. Проведенные им опыты по скрещиванию и гибридизации растений заложили основы современной генетики. Стремясь изучить механизм наследования и передачу отдельных признаков, он провел широкомасштабный опыт на разных видах гороха, исследовав в общей сложности около 20 000 гибридов. В результате он сформулировал несколько базовых принципов, получивших впоследствии название «Законы Менделя».

В краткой форме о проделанной работе он рассказал в докладе Брюннскому обществу естествоиспытателей в 1865 году, но его исследования не заинтересовали научное сообщество. Впоследствии ученый пытался проверить свои выводы на других видах растений и животных, но потерпел неудачу, из-за чего разуверился в своих достижениях и больше к подобным изысканиям не возвращался.

Настоящее признание к нему пришло уже после смерти, в начале XX века, когда генетика стала оформляться как самостоятельное направление в биологии. В это время несколько ученых самостоятельно друг от друга пришли к тем же выводам, что и Грегор Мендель, и открытые им принципы пережили второе рождение.

Первый закон Менделя — при моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

При моногибридном скрещивании, исследуется наследование только одной пары альтернативных признаков (например, только мягкий или кислый вкус), при дигибридном — две (дополнительно это может быть форма семян — округлая или угловатая), при полигибридном — несколько (еще и другие качества — цвет, фактуру кожуры и пр.).

Альтернативные признаки — взаимоисключающие дискретные признаки, которые обычно не могут присутствовать у организма одновременно (например, желтая или зеленая окраска горошин, красная или белая окраска цветков у гороха).

Фенотип — набор признаков, характерных для организма на определенной стадии развития. Например, у растений это форма листьев, цвет плодов и др.

Генотип — совокупность генов у конкретного организма.

В соответствии с этим Законом единообразия гибридов первого поколения, при возможности наследовать два однотипных признака все потомки первого поколения приобретают одно и то же качество. Оно переходит к ним в неизменной форме без смешивания. Мендель назвал такой признак доминантным, более слабый, подавляемый — рецессивным.

Например, можно провести скрещивание гороха с генотипом желтого (АА) и зеленого (аа) цвета зерен. При доминировании первого признака, ген (А) в первом поколении будет подавлять (а) и не даст ему появиться. Полученные семена (Аа) будут иметь желтый цвет, который такой же, как и у одного из родителей. Другое название приведенного Закона — принцип доминирования признаков.

По сложившейся традиции, приписными буквами (А) обозначается доминантный ген, срочными (а) — рецессивный.

Формулировка этого закона основывалась на наличии чистой линии — возможности организмов полностью передавать некоторые признаки. К примеру, это могут быть сорта растений, потомство которых при самоопылении будет морфологически сходным и генетически идентичным.

Дальнейшее развитие биологии уточнило выводы Грегора Менделя. Так для некоторых типов генов возможно неполное доминирование. В этом случае подавление происходит только частично, что приводит к смешиванию признаков. Например, при скрещивании цветков ночной красавицы с красными (АА) и белыми (аа) лепестками, потомство будет иметь розовый (Аа) цвет.

В отдельных случаях возможно кодоминирование, когда признаки выступают смешанно (синхронно). Например, это проявляется, когда ребенок наследует группу крови типа АВ0 от родителей (тут А и В – доминантные гены, 0 – рецессивный). Возможные ситуации:

Например, в соответствии с указанной схемой, у родителей со II и III группами крови, в 25% случаев у ребенка будет IV гр.

Второй закон Менделя — при моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Гетерозиготные особи — такие организмы, у которых копии генов в хромосомах представлены разными аллелями. В результате неполного или полного доминирования может проявляться как смесь этих признаков (АВ), так и один из них (Аb). Противоположностью гетерозиотности является гомозиготность, когда аллели гена в хромосомах идентичны.

Аллель — различные формы одного и того же гена, расположенные в одинаковых участках хромосом.

В соответствии со вторым законом Менделя, при скрещивании гетерозиготных особей происходит расщепление, когда часть потомства несет доминантный признак, а часть — рецессивный. Проявление более слабых характеристик свидетельствует о том, что они не подавляются полностью.

Так, расщепление при скрещивании двух особей типа Аb (где А — доминантный зеленый цвет, b — рецессивный желтый) покажет следующие результаты: АА, Аb, Аb и bb, которые в соответствии со вторым законом Менделя будут различаться:

Необходимо знать, что для выполнения второго закона Менделя необходимо соблюдение нескольких условий. К наиболее важным относятся:

Законы Менделя: первый, второй и третий закон Менделя

  • Геометрия
  • Информатика
  • Математика
  • Алгебра
  • Алгебра и начала математического анализа
  • Изобразительное искусство
  • Музыка
  • Испанский язык
  • Английский язык
  • Немецкий язык
  • Французский язык
  • Основы безопасности жизнедеятельности
  • Физическая культура
  • Русский язык
  • Литература
  • Литературное чтение

ЗАКОНА НЕЗАВИСИМОГО НАСЛЕДОВАНИЯ ПРИЗНАКОВ

  • История
  • География
  • Обществознание
  • Экология
  • Россия в мире
  • Право
  • Окружающий мир
  • Экономика
  • Технология (мальчики)
  • Технология
  • Технология (девочки)

(НАСЛЕДОВАНИЯ) ПРИЗНАКОВ

(ТРЕТИЙ ЗАКОН МЕНДЕЛЯ)

Этот закон говорит о том, что каждая пара альтернативных при-

знаков ведет себя в ряду поколений независимо друг от друга, в ре-

зультате чего среди потомков первого поколения (т.е. в поколении F 2)

в определенном соотношении появляются особи с новыми (по срав-

нению с родительскими) комбинациями признаков. Например, в слу-

чае полного доминирования при скрещивании исходных форм, раз-

личающихся по двум признакам, в следующем поколении (F2) выяв-

ляются особи с четырьмя фенотипами в соотношении 9:3:3:1. При

этом два фенотипа имеют «родительские» сочетания признаков, а

ведении (расщеплении) нескольких пар гомологичных хромосом. Так,

при дигибридном скрещивании это приводит к образованию у гибри-

дов первого поколения (F1) 4 типов гамет (АВ, Ав, аВ, ав), а после

соответственно, по фенотипу в следующем поколении (F2).

Поведение альтернативных форм одного признака Менделю объяснил принцип расщепления, наблюдаемый при моногибридном скрещивании. Следующий его шаг – прослеживание наследования двух разных признаков: дигибридное скрещивание.

С пониманием поведения отдельных черт, Мендель продолжал спрашивать себя, а как ведут себя разные черты по отношению друг к другу, влияют ли они друг на друга или нет. Он решил проследить за тем, как передаются 2 признака, не обращая внимание на множество других, отличающих родителей характеристик.


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован.

Для любых предложений по сайту: [email protected]