3 закона менделя о наследовании признаков

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «3 закона менделя о наследовании признаков». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Этот закон был установлен в ходе первого этапа эксперимента. Были взяты два гороха с разными особенностями – разным цветом семян. Они были обозначены как родительские растения или «РР». Одни были желтые, другие зеленые. Для чистоты эксперимента проводилось искусственное опыление.

Законы Менделя

Результатом стало появление гороха первого поколения «F1». У таких растений семена всегда были желтыми. Это значит, что второе поколение представляло собой один определенный тип и имело признаки только одного из растений первого поколения (желтый цвет в данном случае). Такие признаки называются доминантными.

Таким образом у всего второго поколения проявилось единообразие, что и дало название закону.

Для третьего опыта Мендель использовал растения гороха с несколькими различающимися признаками: цвет семян и их гладкость. Один вид имел семена гладкие желтые, а второй – зеленые и ребристые.

В первом поколении растение приобрело следующие признаки: желтый цвет и гладкость семян.

Во втором поколении уже наблюдалось расщепление:

  • желтый цвет и гладкие семена;

  • желтый цвет и ребристые семена;

  • зеленый цвет и гладкие семена;

  • зеленый цвет и ребристые семена.

Получившийся результат говорит о том, что передача и наследование двух разных признаков не зависит друг от друга. А соответственно за гладкость отвечает другой ген, у которого своей набор аллелей. Гладкие семена обуславливаются сочетанием аллелей «BB», «Bb», «bB».

В ходе экспериментов Мендель смог установить, что любой ген может содержать рецессивную и(или) доминантную части. Она подавляет рецессивную. Обе эти части впоследствии были названы аллелями. При соединении растений с разными генами, их аллели будут передаваться независимо друг от друга, что начнет проявляться во втором поколении. Если в первом поколении растение приобретает только доминантные признаки, то во втором начнут проявляться и рецессивные. На этом и основываются три закона Менделя и это позволяет ученым-генетикам предугадывать поведение организма при размножении.

Закон чистоты гамет подразумевает, что в эту клетку попадает только один аллель из пары, имеющейся у гена родителя.

Гаметы — репродуктивные клетки, имеющие одинарный набор хромосом и участвующие в половом размножении.

По гипотезе Менделя, понадобившейся ему для обоснования Закона расщепления, при слиянии мужской и женской гамет наследственные признаки не смешиваются, а передаются в изначальном виде (то есть остаются чистыми). Позднее было подтверждено, что от отцовского и материнского организмов зигота получает по половине хромосом.

Из всех закономерностей, установленных Менделем для наследственности, этот закон имеет наиболее общий характер, то есть, выполняется для самого широкого круга обстоятельств.

Третий закон Менделя — если особи отличаются двумя (и более) парами признаков, то при скрещивании эти особенности наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Согласно этому правилу, если гены находятся в разных хромосомах, дигетерозиота АаBb может образовать 4 типа гамет: АB, Аb, аB и аb (где А — желтые семена, а — зеленые, В — гладкие, b — морщинистые). Из 16-ти возможных комбинаций они образуют следующие фенотипы:

  • Желтые гладкие (ААВВ и др.) — 4 шт.
  • Желтые морщинистые (ААbb и др.) — 3 шт.
  • Зеленые гладкие (aaВВ и др.) — 3 шт.
  • Зеленые морщинистые (ааbb) — 1 шт.

Таким образом, из представленной схемы видно, что среди гибридов второго поколения расщепление идет в соотношении 4:3:3:1. Исследованиями биологов было установлено, что важным условием выполнения этого Закона является ситуация, при которой гены, отвечающие за конкретные признаки должны находиться в разных парах хромосом.

feniks.help — Скорая помощь студентам

Признак — любая особенность организма, любое его качество или свойство, по которому можно отличить одну особь от другой.

Альтернативные признаки — взаимоисключающие варианты одного и того же признака (пример: желтая и зеленая окраска семян гороха).

Доминирование — преобладание у гибрида признака одного из его родителей.

Доминантный признак — преобладающий признак, появляющийся в первом поколении потомства у гетерозиготных особей и доминантных гомозигот (см. ниже).

Рецессивный признак — признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков; проявляется в гомозиготном состоянии рецессивного гена.

Фенотип — совокупность всех внешних и внутренних признаков организма. Фенотип формируется при взаимодействии генотипа со средой обитания организма.

Аллель — одна из альтернативных форм существования гена, определяющего некоторый признак. Количество аллелей одного и того же гена может достигать нескольких десятков.
■ Каждая хромосома или хроматида может нести только один аллель данного гена.
■ В клетках одной особи присутствует только два аллеля каждого гена.

Локус — участок хромосомы, на котором расположен ген.

Аллельные гены — гены, расположенные в одних и тех же локусах гомологичных хромосом и отвечающие за альтернативные проявления одного и того же признака (пример: гены, отвечающие за цвет глаз человека). Аллельные гены обозначают одинаковыми буквами латинского алфавита: А, а; В, b.

Неаллельные гены — гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом.

Доминантные гены — гены, соответствующие доминантным признакам; обозначаются прописными латинскими буквами (А, В).

Рецессивные гены — гены, соответствующие рецессивным признакам; обозначаются строчными латинскими буквами (а, b).

Генотип — совокупность всех генов данного организма.

Скрещивание — получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке.

Генетическая запись скрещивания:

первая строка: буква Р (родители), генотип женского организма, знак скрещивания х, генотип мужского организма; под обозначениями генотипов могут быть указаны признаки организмов;

вторая строка: буква G (гаметы) и (под обозначениями генотипов, в кружочках) гаметы женской и мужской особей;

третья строка: буква Fk (потомки), генотипы потомков (под обозначениями генотипов могут быть указаны признаки организмов); к — номер поколения.

Гомозигота — зигота, содержащая одинаковые аллели одного гена — доминантные (АА, доминантная гомозигота) или рецессивные (аа, рецессивная гомозигота).

■ Гомозиготная особь образует один тип гамет и не дает расщепления при скрещивании.

Гетерозигота — зигота, содержащая два разных аллеля одного гена (Аа).

■ Гетерозиготная особь в потомстве дает расщепление по данному признаку. Образует несколько типов гамет.

Правило (гипотеза) чистоты гамет. Так как каждая хромосома или хроматида может нести только один аллель данного гена, то при расхождении хромосом (при первом делении мейоза) или хроматид (при втором делении мейоза) вместе с ними в гаплоидные клетки гамет отходит лишь по одному из аллелей каждой аллельной пары.

Поэтому: любая гамета организма несет только по одному аллелю каждого гена, т.е. аллели в гаметах не перемешиваются.

Следствия правила чистоты гамет:

Передача наследственных признаков, законы Менделя

Первый закон Менделя (закон единообразия гибридов первого поколения, или правило доминирования) описывает скрещивание гомозиготных особей: при скрещивании гомозиготных особей (взятых из чистых линий одного вида), отличающихся по одному из пары альтернативных признаков, получаемые гибриды первого поколения единообразны как по фенотипу, так и по генотипу.

Третий закон Менделя (закон независимого наследования признаков) описывает дигибридное скрещивание особей: при скрещивании гомозиготных организмов, отличающихся по двум или нескольким парам признаков, во втором поколении наблюдается независимое наследование генов разных аллельных пар и соответствующих им признаков.

Т.е. каждая пара аллельных генов (и соответствующих им альтернативных признаков) наследуется независимо друг от друга (другая формулировка 3-го закона Менделя).

Законы Менделя выполняются лишь в среднем, при большом числе однотипных опытов. Они являются следствием случайного сочетания гамет, несущих разные гены, и статистического характера наследования, определяемого большим числом равновероятных встреч гамет.

❖ Дополнительные условия, при которых выполняются законы Менделя:
■ один ген должен контролировать только один признак, и один признак должен быть результатом действия только одного гена;
■ доминирование должно быть полным;
■ сцепление между генами должно отсутствовать;
■ равновероятное образование гамет и зигот разного типа;
■ равная вероятность выживания потомков с разными генотипами;
■ статистически большое количество скрещиваний.

❖ Значение законов Менделя:
■ эти законы носят универсальный характер и не зависят от систематического положения организма и сложности его строения;
■ с их помощью можно рассчитать число типов образующихся гамет и установить возможные варианты сочетания доминантных и рецессивных признаков у гибридов.

Не возвращаясь к расхождениям в интерпретации экспериментов Менделя между их автором и современными генетиками, можно вкратце напомнить, что путем скрещивания
гладкого горошка и морщинистого горошка Мендель получил гладкий гибридный горошек (который в точности соответствовал принципу однородности гибридов первого поколения), а также путем скрещивания между семенами этого горошка он получил 3/4 гладкого гороха и 1/4 морщинистого горошка (рисунок 1).

Основы генетики. Законы наследственности

Для своих опытов он выбрал горох:

  • Горох легко выращивать и ухаживать за ним.
  • Он естественно самоопыляется, но может также подвергаться перекрестному опылению.
  • Это однолетнее растение, поэтому за короткий промежуток времени можно изучить многие поколения.
  • В нем есть несколько контрастных видов.

Мендель провел 2 основных эксперимента по определению законов наследования. Эти эксперименты были:

  • Моногибридное скрещивание
  • Дигибридное скрещивание

Экспериментируя, Мендель обнаружил, что определенные факторы всегда стабильно передавались потомству. Эти факторы теперь называются генами, то есть гены можно назвать единицами наследования.

В этом эксперименте Мендель взял два растения гороха противоположных признаков (одно короткое и одно высокое) и скрестил их. Он обнаружил, что потомство первого поколения было высоким, и назвал его потомством F1. Затем он скрестил потомство F1 и получил как высокие, так и короткие растения в соотношении 3: 1.

Мендель даже провел этот эксперимент с другими контрастирующими признаками, такими как зеленый горошек против желтого горошка, круглый или морщинистый и т. д. Во всех случаях он обнаружил, что результаты были одинаковыми. Исходя из этого, он сформулировал законы сегрегации и доминирования.

В эксперименте с дигибридным скрещиванием Мендель рассмотрел два признака, каждый из которых имеет два аллеля. Он скрестил морщинистые зеленые семена и округло-желтые семена и заметил, что все потомство первого поколения (потомство F1) было округло-желтым. Это означало, что доминирующими чертами были круглая форма и желтый цвет.

Затем он самоопылял потомство F1 и получил 4 разных признака: морщинисто-желтые, округло-желтые, морщинисто-зеленые семена и округло-зеленые семена в соотношении 9: 3: 3: 1.

  • Генетический состав растения известен как генотип. Напротив, внешний вид растения известен как фенотип.
  • Гены передаются от родителей к потомству парами, известными как аллели.
  • Во время гаметогенеза, когда хромосомы делятся вдвое, существует 50% -ная вероятность слияния одного из двух аллелей с другим родителем.
  • Когда аллели одинаковы, они известны как гомозиготные аллели, а когда аллели различны, они известны как гетерозиготные аллели.

Закон расщепления гласит, что во время производства гамет две копии каждого наследственного фактора разделяются, так что потомство получает по одному фактору от каждого родителя. Другими словами, пары аллелей (альтернативная форма гена) разделяются во время формирования гамет и повторно объединяются случайным образом во время оплодотворения. Этот закон также известен как третий закон Менделя о наследовании.

А1. Доминантный аллель – это

1) пара одинаковых по проявлению генов

2) один из двух аллельных генов

3) ген, подавляющий действие другого гена

4) подавляемый ген

А2. Часть молекулы ДНК считается геном, если в ней закодирована информация о

1) нескольких признаках организма

2) одном признаке организма

3) нескольких белках

4) молекуле т-РНК

А3. Если признак не проявляется у гибридов первого поколения, то он называется

1) альтернативным

2) доминантным

3) не полностью доминирующим

4) рецессивным

А4. Аллельные гены расположены в

1) идентичных участках гомологичных хромосом

2) разных участках гомологичных хромосом

3) идентичных участках негомологичных хромосом

4) разных участках негомологичных хромосом

А5. Какая запись отражает дигетерозиготный организм:

1) ААВВ

2) АаВв

3) АаВвСс

4) ааВВсс

А6. Определите фенотип тыквы с генотипом Сс ВВ, зная, что белая окраска доминирует над желтой, а дисковидная форма плодов – над шаровидной

1) белая, шаровидная

2) желтая, шаровидная

3) желтая дисковидная

4) белая, дисковидная

А7. Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы (ген комолости В доминирует) с рогатым быком.

1) все ВВ

2) все Вв

3) 50% ВВ и 50% Вв

4) 75% ВВ и 25% Вв

А8. У человека ген лопоухости (А) доминирует над геном нормально прижатых ушей, а ген нерыжих (В) волос над геном рыжих волос. Каков генотип лопоухого, рыжего отца, если в браке с нерыжей женщиной, имеющей нормально прижатые уши, у него были только лопоухие, нерыжие дети?

1) ААвв

2) АаВв

3) ааВВ

4) ААвВ

А9. Какова вероятность рождения голубоглазого (а), светловолосого (в) ребенка от брака голубоглазого темноволосого (В) отца и кареглазой (А), светловолосой матери, гетерозиготных по доминантным признакам?

1) 25%

2) 75%

3) 12,5%

4) 50%

А10. Второй закон Менделя – это закон, описывающий процесс

1) сцепления генов

2) взаимного влияния генов

3) расщепления признаков

4) независимого распределения гамет

А11. Сколько типов гамет образует организм с генотипом ААВвСс

1) один

2) два

3) три

4) четыре

А1. Сколько пар хромосом отвечает за наследование пола у собак, если диплоидный набор у них равен 78?

1) одна

2) две

3) тридцать шесть

4) восемнадцать

А2. Закономерности сцепленного наследования относятся к генам, расположенным в

1) разных не гомологичных хромосомах

2) гомологичных хромосомах

3) в одной хромосоме

4) негомологичных хромосомах

А3. Мужчина дальтоник женился на женщине с нормальным зрением, носительнице гена дальтонизма. Ребенка с каким генотипом у них быть не может?

1) ХdХ

2) XX

3) ХdХd

4) ХУ

А4. Чему равно число групп сцепления генов, если известно, что диплоидный набор хромосом организма равен 36?

1) 72

2) 36

3) 18

4) 9

А5. Частота кроссинговера между генами К и С – 12%, между генами В и С – 18%, между генами К и В – 24%. Каков вероятный порядок расположения генов в хромосоме, если известно, что они сцеплены.

1) К-С-В

2) К-В-С

3) С-В-К

4) В-К-С

А6. Каким будет расщепление по фенотипу в потомстве, полученном от скрещивания черных (А) мохнатых (В) морских свинок, гетерозиготных по двум признакам, сцепленным в одной хромосоме?

1) 1 : 1

2) 2 : 1

3) 3 : 1

4) 9 : 3 : 3 : 1

А7. У супружеской пары родился сын гемофилик. Он вырос и решил жениться на здоровой по данному признаку женщине, не несущей гена гемофилии. Каковы возможные фенотипы будущих детей этой супружеской пары, если ген сцеплен с Х-хромосомой?

  • Естествознание
    • Физика
    • Математика
    • Химия
    • Биология
    • Экология
  • Обществознание
    • Обществознание — как наука
    • Иностранные языки
    • История
    • Психология и педагогика
    • Русский язык и литература
    • Культурология
    • Экономика
    • Менеджмент
    • Логистика
    • Статистика
    • Философия
    • Бухгалтерский учет
  • Технические науки
    • Черчение и инженерная графика
    • Материаловедение
    • Сварка
    • Электротехника и электроника
    • АСУТП и КИПИА
    • Технологии
    • Теоретическая механика и сопромат
    • САПР
    • Метрология, стандартизация и сертификация
    • Геодезия и маркшейдерия
  • Программирование и сеть
    • Информатика
    • Языки программирования
    • Алгоритмы и структуры данных
    • СУБД
    • Web разработки и технологии
    • Архитектура ЭВМ и основы ОС
    • Системное администрирование
    • Создание программ и приложений
    • Создание сайтов
    • Тестирование ПО
    • Теория информации и кодирования
    • Функциональное и логическое программирование

    Раздел ЕГЭ: 3.5. Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно-и дигибридное скрещивание)…



    Мендель, проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридно-логический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

    Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия первого поколения.

    Законы Менделя: первый, второй и третий закон Менделя

    Грегор Мендель установил закономерности наследования, а не наследственности. Признаки, передающиеся от поколения к поколению, он назвал наследственными зачатками, так как о гене тогда еще не существовало понятия.

    Закономерности наследственности

    Формулировка закона

    Схема скрещивания

    Первый закон Менделя. Правило единообразия первого поколения или закон доминирования.

    Грегор Мендель, 1865г.

    Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам — окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки — желтая окраска (I) и гладкая форма (R) семян. Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии гамет все потомство будет единообразным: Ii Rr.

    Лолита, скажите пожалуйста, а можно ли записывать расщепления по фенотипу и генотипу отдельно для каждого признака? Например, нас в школе учили такой записи ответа:
    по цвету шерсти: по ф/т: 3:1 (12 черн., 4 светл.); по г/т: 1:2:1 (4 гомозиг. по домин., 8 гетерозиг., 4 гомозиг. по рецес.);
    по длине шерсти: по ф/т: 3:1 (12 длин., 4 кор.); по г/т: 1:2:1 (4 гомозиг. по домин., 8 гетерозиг., 4 гомозиг. по рецес.).
    Просто если, допустим, признаков не два а больше, то сваливать их все в одну кучу будет ОЧЕНЬ не удобно, и легко запутаться. К тому же при разделении на признаки нагляднее просматривается независимое наследование. Но можно ли так делать?
    А вообще, придираются ли эксперты ЕГЭ к оформлению задачи? Наша учительница по биологии всегда очень жестко этого требовала и снижала оценки если, например, не напишешь в условии «Дано (ген-признак):» или не распишешь типы гамет.

    Как вы решаете — это экзаменаторам не очень важно. Важно, что вы пишите после слова «ОТВЕТ»…
    От того, распишите ли вы правильно гаметы, зависит решение задачи, все остальное — необязательно.
    Важно, чтобы вы давали ответ именно на поставленный вопрос, а не расписывали все, что знаете по теме «генетика»

    Спасибо большое за ответ! Вы меня успокоили:)

    В результате исследований ученых К. Корренса, Г. де Фриза, Э. Чермака в 1900 году были «переоткрыты» законы генетики, сформулированные еще в 1865 году родоначальником науки наследственности – Грегором Менделем. В своих опытах естествоиспытатель применил гибридологический метод, благодаря которому были сформулированы принципы наследования признаков и некоторых свойств организмов. В данной статье мы рассмотрим основные закономерности передачи наследственности, изучаемые генетиком.

    Применение гибридологического метода позволило ученому установить ряд закономерностей, впоследствии названных законами Менделя. Например, им было сформулировано правило единообразия гибридов первого поколения (первый закон Менделя). Он указывал на факт проявления у гибридов F1 только одного признака, контролируемого доминантным геном. Так, при скрещивании растений посевного гороха, сорта которого различались цветом семян (желтые и зеленые), все гибриды первого поколения имели только желтое окрашивание семян. Более того, все эти особи имели также и одинаковый генотип (являлись гетерозиготами).

    Продолжая скрещивать между собой особи, взятые из гибридов первого поколения, Мендель получил в F2 расщепление признаков. Другими словами, фенотипически были выявлены растения с рецессивным алеллем исследуемого признака (зеленой окраской семян) в количестве одной трети от всех гибридов. Таким образом, установленные законы независимого наследования признаков позволили Менделю проследить механизм передачи как доминантных, так и рецессивных генов в нескольких поколениях гибридов.

    В последующих экспериментах Мендель усложнил условия их проведения. Теперь, для скрещивания брались растения, отличающиеся как двумя, так и большим количеством пар альтернативных признаков. Ученый проследил принципы наследования доминантных и рецессивных генов и получил результаты расщепления, которые можно представить общей формулой (3:1) n , где n – количеств пар альтернативных признаков, которыми отличаются родительские особи. Так, для дигибридного скрещивания расщепление по фенотипу у гибридов второго поколения будет иметь вид: (3:1) 2 =9:6:1 или 9:3:3:1. То есть у гибридов второго поколения можно наблюдать четыре вида фенотипов: растения с желтыми гладкими (9/16 частей), с желтыми морщинистыми (3/16), с зелеными гладкими (3/16) и с зелеными морщинистыми семенами (1/16 часть). Таким образом, законы независимого наследования признаков получили свое математическое подтверждение, и полигибридное скрещивание стали рассматривать как несколько моногибридных – «накладывающихся» друг на друга.

    В генетике присутствуют несколько типов передачи признаков и свойств от родителей к детям. Главным критерием здесь служит форма контроля признака, осуществляемая либо одним геном – моногенное наследование, или несколькими – полигенное наследование. Ранее мы рассмотрели законы независимого наследования признаков для моно- и дигибридного скрещивания, а именно первый, второй и третий закон Менделя. Сейчас мы рассмотрим такую форму, как сцепленное наследование. Его теоретическую основу представляет теория Томаса Моргана, названная хромосомной. Ученый доказал, что наряду с признаками, передаваемыми потомству независимо, существуют такие виды наследования, как аутосомное и связанное с полом сцепление.

    Для облегчения учета результатов эксперимента Грегор Мендель избрал растения с четко отличающимися признаками. Это были цвет и форма семян.

    Для начала он получил семена «чистых линий» растений. Эти семена при дальнейшем посеве и в результате самоопыления не давали расщепления признаков.

    При скрещивании разных сортов гороха — с пурпурными цветками и с белыми цветками, в первом поколении гибридов Мендель получал все растения с пурпурными цветками. Аналогичными были результаты, когда ученый брал растения гороха с желтыми и зелеными семенами или семенами гладкой и морщинистой формы.

    По результатам этих опытов Грегор Мендель вывел закон единообразия гибридов первого поколения, который мы знаем, как «первый закон Менделя». Сегодня он звучит так:

    «При скрещивании двух гомозиготных организмов. которые относятся к чистым линиям и отличаются друг от друга по одной паре альтернативных проявлений определенного признака, всё первое поколение гибридов (F1) окажется полностью единообразным и будет нести проявление признака только одного из родителей».

    Данный закон еще называют законом доминирования признаков. Он означает, что доминирующий признак появляется в фенотипе, подавляя рецессивный.

    Законы Г. Менделя раскрыли дискретную, корпускулярную природу наследственности. Они имеют универсальный характер и исполняются в случае полового размножения диплоидних организмов. Но считать их абсолютно универсальными было бы неверно. Законы классической генетики имеют определенные ограничения. Для выявления законов Г. Менделя необходимы:

    • гомозиготность производных форм;
    • образование у гибридов гамет всех возможных типов в соответствующих соотношениях, что обеспечивается правильным течением мейоза;
    • одинаковая жизнеспособность гамет всех типов, равная вероятность встречи любых типов гамет при оплодотворении;
    • одинаковая жизнеспособность всех типов зигот.

    Нарушение этих условий может привести либо к отсутствию расщепления во втором поколении гибридов, или к искажению соотношения различных генотипов и фенотипов. Например, наследование особой группы крови у человека (наследование резус-фактора) подчиняется законам Менделя. Казалось бы, 74% людей должны быть резус-положительными, а 25% – резус-отрицательными. Но на самом деле такое соотношение составляет 85% к 15%. Причина заключается в наличии резус-конфликта между матерью и плодом.

    Обратите внимание, что все законы Менделя справедливы лишь в случае полного доминирования. Когда доминирование будет неполным, то гетерозиготная форма будет промежуточным видом и потребности в рассматриваемом скрещивании не будет. Еще одним ограничением является случай, когда какие-то признаки наследуются вместе. В этом случае будет нарушаться закон независимого наследования. Существует группа признаков, которая кодируется большим количеством генов. Это так называемая полигенная наследственность. Понятно, что в этом случае будет нарушаться закон чистоты гамет.

    Несмотря на существование отдельных ограничений, законы наследственности, открытые Г. Менделем, остаются основными закономерностями природы.

    Закономерности наследственности и изменчивости

    Закон выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:

    • форма семени (круглая/некруглая);
    • окраска семени (желтая/зеленая)
    • кожура семени (гладкая/морщинистая) и т.д.

    При скрещивании растений с гладкими и морщинистыми семенами все гибриды первого поколения оказались гладкими. Этот признак был назван доминантным.

    Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого — белые.

    Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

    Три закона Менделя — основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел — генетику.

    С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика — это один из самых интересных и перспективных разделов биологии.

    Моногибридным называется такое скрещивание, в результате которого изучается проявление одного признака. При этом прослеживаются наследственные закономерности пары вариантов по одному признаку. Развитию данных проявлений способствуют пары аллельных генов.

    К примеру, признак «окраски венчика цветка» гороха может проявляться в двух вариациях: белый и красный. Другие признаки, присущие данным организмам, во внимание не берутся.

    • Čeština
    • Español
    • Français
    • Italiano
    • Nederlands
    • Polski
    • Português
    • Русский
    • Türkçe
    • Norsk
    • Svenska
    • Dansk
    • Suomen kieli
    • Magyar
    • Română

    Кинологический клуб «Верность»

    Основная статья: История генетики

    Принципы менделевской наследования были названы в честь и впервые выведены Грегором Иоганном Менделем , моравским монахом девятнадцатого века, который сформулировал свои идеи после проведения простых экспериментов по гибридизации гороха ( Pisum sativum ), который он посадил в саду своего монастыря. Между 1856 и 1863 годами Мендель вырастил и испытал около 5000 растений гороха. Из этих экспериментов он сделал два обобщения, которые позже стали известны как принципы наследственности Менделя или менделевское наследование . Он описал свои эксперименты в статье, состоящей из двух частей, Versuche über Pflanzen-Hybriden ( Эксперименты по гибридизации растений ), которую он представил Обществу естествознания Брно 8 февраля и 8 марта 1865 года и которая была опубликована в 1866 году.

    Результаты Менделя в значительной степени игнорировались подавляющим большинством. Хотя они не были полностью неизвестны биологам того времени, они не рассматривались как общеприменимые даже самим Менделем, который считал, что они применимы только к определенным категориям видов или признаков. Основной блок для понимания их значения было значением , придаваемые биологами 19-го века до видимого смешения из многих наследственных признаков в общем виде потомства, сейчас известно, что из — за несколько генами взаимодействий , в отличии от органа-специфического двоичные символы изучал Мендель. Однако в 1900 году его работа была «заново открыта» тремя европейскими учеными, Гуго де Фризом , Карлом Корренсом и Эрихом фон Чермаком . Точная природа «повторного открытия» обсуждалась: Де Фрис первым опубликовал по этому вопросу, упомянув Менделя в сноске, в то время как Корренс указал на приоритет Менделя после того, как прочитал статью Де Фриза и понял, что он сам не имел приоритета. . Де Фриз, возможно, не признал правдиво, сколько его знаний о законах было получено из его собственных работ, а сколько — только после прочтения статьи Менделя. Позже ученые обвиняли фон Чермака в том, что он вообще не понимал результатов.

    Тем не менее, «повторное открытие» сделало менделизм важной, но противоречивой теорией. Самым активным его пропагандистом в Европе был Уильям Бейтсон , придумавший термины « генетика » и « аллель » для описания многих его принципов. Модель наследственности оспаривалась другими биологами, потому что она подразумевала, что наследственность была прерывистой, в отличие от очевидной непрерывной изменчивости, наблюдаемой для многих признаков. Многие биологи также отвергли эту теорию, потому что не были уверены, что она применима ко всем видам. Однако более поздняя работа биологов и статистиков, таких как Рональд Фишер, показала, что если несколько менделевских факторов были задействованы в выражении индивидуального признака, они могли бы дать различные наблюдаемые результаты, и таким образом показали, что менделевская генетика совместима с естественным отбором . Томас Хант Морган и его помощники позже интегрировали теоретическую модель Менделя с хромосомной теорией наследования, в которой хромосомы клеток, как считалось, содержат фактический наследственный материал, и создали то, что сейчас известно как классическая генетика , очень успешный фундамент, который в конечном итоге закрепил Место Менделя в истории.

    Менделирующая черта — это черта, которая контролируется одним локусом в паттерне наследования. В таких случаях мутация в одном гене может вызвать заболевание, которое передается по наследству в соответствии с принципами Менделя. Доминирующие заболевания проявляются у гетерозиготных особей. Иногда рецессивные наследуются генетическими носителями незаметно . Примеры включают серповидно-клеточную анемию , болезнь Тея – Сакса , муковисцидоз и пигментную ксеродерму . Заболевание, контролируемое одним геном, контрастирует с многофакторным заболеванием, таким как болезнь сердца, на которую влияют несколько локусов (и окружающей среды), а также заболевания, унаследованные неменделирующим образом.

    Основная статья: неменделирующее наследование

    После исследований и открытий Менделя делались все новые и новые открытия в области генетики. Сам Мендель сказал, что обнаруженные им закономерности применимы только к организмам и характеристикам, которые он сознательно выбрал для своих экспериментов. Мендель объяснил наследование дискретными факторами — генами, — которые передаются от поколения к поколению в соответствии с правилами вероятности. Законы Менделя действительны для всех организмов, размножающихся половым путем, включая горох и людей. Однако законы Менделя не позволяют объяснить некоторые закономерности генетической наследственности. Для большинства организмов, размножающихся половым путем, случаи, когда законы Менделя могут строго учитывать все модели наследования, относительно редки. Часто модели наследования более сложные.

    В случае кодоминирования фенотипы, продуцируемые обоими аллелями, четко выражены. Мендель выбрал генетические признаки растений, которые определяются только двумя аллелями, такими как «А» и «а». В природе гены часто существуют в нескольких различных формах с множеством аллелей . Более того, многие черты возникают в результате взаимодействия нескольких генов. Признаки, контролируемые двумя или более генами, считаются полигенными .

    • Вконтакте
    • Сайт

    Генетические термины и символика

    Мендель скрестил чистую линию желтого гладкого гороха с чистой линией зеленого морщинистого (это дигибридное скрещивание, т.к. родители отличаются по двум признакам). Все потомство получилось желтым гладким (AaBb).

    Мендель дал ему самоопылиться. Во втором поколении получилось расщепление 9:3:3:1. 9 A_B_ желтые гладкие 3 A_bb желтые морщинистые 3 aaB_ зеленые гладкие 1 aabb зеленые морщинистые

    Общее количество желтых горошин составило 9+3=12, общее количество зеленых 3+1=4; 12:4 – это 3:1; с гладкими/морщинистыми горошинами получилось то же самое. Как будто два моногибридных скрещивания произошли независимо друг от друга, а затем их результаты совместились.

    Третий закон Менделя (закон независимого наследования): расщепление по каждой паре признаков происходит независимо от других пар признаков.

    Основываясь на третьем законе, можно рассмотреть дигибридное скрещивание AaBb x AaBb как два независимых моногибридных скрещивания Aa x Aa и Bb x Bb, а затем перемножить вероятности. Например, 3/4 желтых умножить на 3/4 гладких получится 9/16 желтых гладких.

    Даже в древнейших письменных памятниках, дошедших до наших дней, упоминаются некоторые особенности наследственности, такие как сходство между членами одной семьи. Основные представления о наследственности, распространены в начале XX века, базировались на двух принципах. Во-первых, считалось, что наследственность работает только в пределах одного вида. Хотя в мифологии многих народов встречаются такие гибридные животные как минотавры, кентавры, Мантикоры и т.д., а жирафы считались следствием пересечения верблюда и леопарда (это отражено в видовом названии Giraffa camelopardalis), начиная со Средневековья людям стало известно, что гибридизация между такими далекими видами преимущественно является невозможной. Таким образом сформировалось понятие о том, что наследственность и изменчивость действует только внутри каждого вида, а сами виды остались неизменными со времени их создания.

    Другое «доменделивське» представления о наследственности состояла в том, что черты наследуются напрямую. Такие Гиппократ писал, что репродуктивный материал, который он называл «ґонос», от каждой части тела родителей независимо передается соответствующей части тела ребенка, и определяют ее развитие. Похожие теории наследственности были распространены еще до конца XIX в., Так Дарвин 1868 предполагал, что ткани тела родителей производят микроскопические гранулы (gemmules), которые передаются ребенку и обеспечивают формирование соответствующих структур у эмбриона. Представление о прямом наследовании преимущественно сочеталось с идеей о смешении признаков матери и отца. Например, если у одного из родителей черные волосы, а у другого — белое, дети должны быть русыми.

    «Классические» представления о наследственности, однако, порождали очевидный парадокс: если, во-первых, наследственность существует только в пределах одного вида, и нет никаких внешних источников изменчивости, во-вторых, черты родителей просто смешиваются в потомства, тогда со временем все особи одного вида должны были бы стать совершенно одинаковыми. А это отнюдь не наблюдается в природе.

    Первые научные результаты, ставили под сомнение идею о прямом наследовании, получил 1760 немецкий ботаник Йозеф Кельрейтер. Он скрещивал разные сорта табака и заметил, что первое поколение потомков отличалось от родительских особей. Однако, если скрестить эти растения между собой, то в следующем поколении среди всего разнообразия полученных растений можно найти не только очень похожих на особей первого поколения (своих родителей), но и к выходным сортов (своих «дедушек и бабушек»). Эта работа стала первым шагом к развитию современной генетики. Кельрейтер четко показал, что, во-первых, признаки не смешиваются, а, во-вторых, могут «маскироваться» в одном поколении и снова возникать в следующем. Это последнее наблюдение очевидно противоречило представлению о прямом наследовании.

    В течение следующих сотни лет работа в направлении, основанном Кёльрёйтером, продолжалась. В частности, над совершенствованием культурных растений работали некоторые английские джентльмены. Один из них, Т.А. Найт, в 1790-х годах скрестил две чистые линии горошка (Pisum sativum) с белыми и розовыми цветами. Все растения первого поколения имели розовые цветы, однако во втором снова появилась небольшое количество особей с белыми лепестками. Итак результаты Найта подтверждали более ранние выводы Кельрейтер. Однако, эти работы должны в себе один весомый недостаток: они не содержали конкретных цифр. Кельрейтер в своих поздних работах писал, что некоторые признаки имеют «сильную тенденцию» к проявлению, но не делал попыток выразить эту тенденцию численно. Это стало одной из причин того, что «революция» в понимании наследственности задержалась на века. Еще одна важная работа, которая, вероятно, имела влияние на формирование идей Менделя была опубликована 1863 году Чарльзом Нодэном. В ней французский натуралист обсуждает в общем эксперименты с гибридизации растений, а также сообщает о расщеплении признаков и доминантность (термин введен Сажере 1826) в дурмана. Однако Нодэн также не описывает свои результаты математически. Именно основываясь на идеях предшественников, и соединив их с удачной планировкой экспериментов и использованием математического аппарата, Менделю удалось открыть основные принципы наследственности.

    Грегор Мендель родился 1822 года в Моравии. По окончании школы и Оломоуцкого института философии в возрасте 21 год он постригся в монахи августинского монастыря Святого Томаса в городе Брюнн (сейчас Брно, Чехия). В то время в Австро-Венгерской империи политика в отношении религиозных заведений, заключалась в том, что они должны были служить не только Церкви, но и государству. Из-за этого, монахи имели доступ к большим библиотек, коллекций гербариев, и вообще вели богатое интеллектуальное жизни.

    Экономические факторы, такие как развитие торговой сети в Европе, стимулировали развитие исследований в области сельского хозяйства. В 1806 году Кристиан Карл Андре основал Моравское общество сельского хозяйства (полное название: Моравское общество усовершенствования сельского хозяйства, естественных наук и знаний о селе). Аббат монастыря Святого Томаса Непп заседал в комитете этого общества, а также был президентом Ассоциации помолог и Энологов. Мендель был заинтересован в изучении естественных наук и сельского хозяйства, и аббат монастыря его поддерживал в этом. Он помог вступления Херихор в Венский университет, где изучал естественные науки и математику, в частности посещал курсы физиологии растений Франца Унгера и экспериментальной физики Кристиана Допплера. И не составив выпускных экзаменов в университете Мендель вернулся в монастырь, где провел остаток своей жизни, и взялся за исследование гибридизации растений. Здесь в саду монастыря начиная с 1857 он проводил опыты, заложили основы современной генетики. Свои результаты он представил 1865 на заседании Брюннського общества естествознания, а в 1866 году они были опубликованы в записках этой организации.

    В качестве модели для своих исследований Грегор Мендель выбрал горох посевной (Pisum sativum), тот же объект, на котором проводили эксперименты Найт и многие другие исследователи. Для этого было несколько причин. Во-первых, предварительные данные, полученные в работах по этим растением, свидетельствовали о том, что можно ожидать расщепление признаков у потомства. Во-вторых, у торговцев семенами можно было купить разные сорта этого растения, отличались между собой четкими признаками, такими как окраска венчика или семян. Мендель начал свой анализ и тщательного изучения 32-х чистых линий горошка, и выбрал те, которые отличались по семи признакам.

    В-третьих, горошек способен как к самоопыление так и к перекрестному опылению. Так как тычинки и пестик в цветах этого растения окружены двумя сросшимися лепестками (так называемый лодка), то пыльца из первых переносится на рыльце последней. Таким образом происходит самоопыление, если же исследователь хочет осуществить перекрестное опыление, то в цветах «материнской» растения тычинки вырезаются до того, как они созреют, после чего пыльца переносят с «родительской» растения кисточкой или непосредственно тычинками.

    Кроме того, горошек выгодный из практических соображений: он дешевый, неприхотливый, не занимает много места, имеет относительно короткий цикл развития и дает достаточно большое количество потомства. Таким образом можно анализировать одновременную большое количество растений и выращивать несколько поколений в течение одного года, ускоряет получение результатов.


    Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован.

Для любых предложений по сайту: [email protected]